Download: Fast, Fun, Awesome
study in australia
student information in australia
Australian University graduate information
professional networking for australian university students
employment links for australian university students
University quizzes for australian students
Beautiful physics: Tying knots in light

Beautiful physics: Tying knots in light

New research published today seeks to push the discovery that light can be tied in knots to the next level.

Dr Anton Desyatnikov from the Nonlinear Physics Centre at The Australian National University is part of an international team of scientists who are designing knots in light, with potential applications in advanced modern optics, laser beams and even quantum computing.

Using concepts from mathematics and physics the model Dr Desyatnikov and his colleagues have explored creates optical vortices with dark cores in a bright laser beam, that can then tangle and form links and knots.

“Apart from their curiosity value, what’s really interesting and useful about these knots of darkness is that they show you what the power flow is doing,” Dr Desyatnikov said.

“It is part of the incredible progress science is making in the field of optics, we’re beginning to do things with light that would have once seemed impossible.”

“The idea of a knot of light is something scientists have been exploring for years and a few groups have managed to achieve just that by precisely engineering laser beams with “artificial” or “hand-made” knots. But what we’ve been working on are models in which the knots spontaneously form on their own, just like those annoying knots that you always get in electrical cables.

”However unlike electrical cables which love to form knots, light doesn’t. Scientists have found that inducing knots to form in laser beams by introducing perturbations in the form of laser speckle only very rarely induces knots.

“Our models suggest that you have to get the key parameters of the light in a certain range before you can easily tie the light in knots but once you do, the knots are virtually guaranteed,” he said.

“The really interesting thing is that we can’t predict exactly where they will form. Just that under these specific circumstances the optical vortices will spontaneously nucleate and tie themselves into little knots.”

Leave a reply

Feature Research
Controlling fear by modifying DNA

For many people, fear of flying or of spiders skittering across the lounge room floor is more than just a [more]

Kidney disease gene controls cancer highway

University of Queensland researchers have discovered that a gene that causes kidney disease also controls growth of the lymphatic system, [more]

Queensland fraud is a billion dollar business

Queensland businesses could be losing over $12 billion per annum as a result of company fraud according to a recent study [more]

Inside the mind of a burglar

Burglars are opportunistic, generally choose their targets at random and know all the tricks householders try to use as deterrents, [more]

Flight experiment goes boldly forth to advance new technology

A hypersonic flight experiment at eight times the speed of sound, led by a University of Queensland PhD student, has [more]

Pre-drinking alcohol before hitting the nightclubs likely to lead to violence

The increasingly common practice of drinking at home before hitting the nightclubs is the major predictor of people experiencing harm [more]

Research reveals women are more interested in a man’s earning capacity than the size of his wallet

Despite ABBA’s insistence that women long for “money, money, money”, research has found that The Beatles were on the [more]

Challenges still face women seeking seniority in business

Research conducted by the UTS Centre for Corporate Governance underpinning the 2012 Australian Census of Women in Leadership reveals a decade [more]

Swiss Army Knife teeth secret to seal’s success

Biologists have shown how an advanced set of teeth give Antarctic leopard seals the biological tools to feast on prey [more]

Beautiful physics: Tying knots in light

New research published today seeks to push the discovery that light can be tied in knots to the next level. [more]